On the Degree of Multivariate Bernstein Polynomial Operators*

Charles K. Chui, Dong Hong, and Shun-Tang Wu ${ }^{\dagger}$
Department of Mathematics, Texas $A \& M$ University, College Station, Texas 77843
Communicated by Zeev Ditzian

Received February 21, 1992; accepted in revised form March 23, 1993

Let σ be a d-dimensional simplex with vertices $\mathbf{v}^{\mathbf{0}}, \ldots, \mathbf{v}^{d}$ and $B_{n}(f, \cdot)$ denote the nth degree Bernstein polynomial of a continuous function f on σ. Dahmen and Micchelli (Stud. Sci. Hungar. 23 (1988), 265-287) proved that $B_{n}(f, \cdot) \geqslant B_{n+1}(f, \cdot)$, $n \in \mathbf{N}$, for any convex function f on σ, and it is clear that a necessary and sufficient condition for the inequality to become an identity for all $n \in \mathbf{N}$ is that f is an affine polynomial. Let σ_{m} be the m th simplicial subdivision of σ (which will be defined precisely later). By using a degree-raising formula, the result of Dahmen and Micchelli can be extended to $B_{m n}(f, \cdot) \geqslant B_{m n+1}(f, \cdot), n \in \mathbf{N}$, for any f which is convex on every cell of σ_{m}. The objective of this paper is to derive conditions under which this inequality becomes an identity. 1994 Academic Press, Inc.

1. Introduction

As usual, let \mathbf{R} denote the set of real numbers, \mathbf{Z}_{+}the set of all nonnegative integers and $\mathbf{N}=\mathbf{Z}_{+} \backslash\{0\}$. Thus, \mathbf{R}^{d} is the d-dimensional Euclidean space and \mathbf{Z}^{d} can be used as a multi-index set. Let σ be a d-dimensional simplex with vertex set $V=\left\{\mathbf{v}^{0}, \ldots, \mathbf{v}^{d}\right\}$. Here, we assume that $\mathbf{v}^{i} \in \mathbf{R}^{d}, i=0, \ldots, d$, are in the general position, namely, the vectors $\mathbf{v}^{i}-\mathbf{v}^{0}$, $i=1, \ldots, d$, are lineary independent. It is clear that, for any $\mathbf{x} \in \mathbf{R}^{d}$, there exists a unique $\xi=\left(\xi_{0}, \ldots, \xi_{d}\right) \in \mathbf{R}^{d+1}$ such that

$$
\mathbf{x}=\sum_{i=0}^{d} \xi_{i} \mathbf{v}^{i}, \quad \sum_{i=0}^{d} \xi_{i}=1
$$

The coefficient $(d+1)$-tuple $\xi=\left(\xi_{0}, \ldots, \xi_{d}\right)$ is called the barycentric coordinates of \mathbf{x} with respect to the simplex σ.

[^0]Let $\alpha=\left(\alpha_{0}, \ldots, \alpha_{d}\right) \in \mathbf{Z}_{+}^{d+1}$ be a multi-index with

$$
|\alpha|:=\sum_{i=0}^{d} \alpha_{i}=n .
$$

The Bernstein polynomial basis of degree n is given by

$$
B_{\alpha, n}(\mathbf{x})=\binom{n}{\alpha} \xi^{\alpha}, \quad \mathbf{x} \in \sigma, \quad|\alpha|=n
$$

with

$$
\binom{n}{\alpha}=\frac{n!}{\alpha_{0}!\alpha_{1}!\cdots \alpha_{d}!}
$$

and $\xi^{\alpha}=\xi_{0}^{\alpha_{0}} \xi_{1}^{\alpha_{1}} \cdots \xi_{d}^{\alpha_{d}}$. Clearly,

$$
B_{\alpha, n}(\mathbf{x}) \geqslant 0 \quad \text { for } \quad \mathbf{x} \in \sigma, \quad \text { and } \quad \sum_{|x|=n} B_{\alpha, n}(\mathbf{x})=1 .
$$

Associated with any $f \in C(\sigma)$, the nth Bernstein polynomial of f on σ is defined by

$$
B_{n}(f, \mathbf{x}):=\sum_{|x|=n} f\left(\mathbf{x}_{\alpha, n}\right) B_{\alpha, n}(\mathbf{x})
$$

where

$$
\mathbf{x}_{\alpha, n}:=\frac{1}{n} \sum_{i=0}^{d} \alpha_{i} \mathbf{v}^{i}, \quad|\alpha|=n,
$$

are called the nth B-net points of σ. Observe that there are $\binom{n+d}{d} n$th B-net points on σ. Let $\mathbf{e}^{i}, i=1, \ldots, d$, denote the standard unit vectors in \mathbf{R}^{d}. In order to avoid an additional subscript or superscript, we will use $\mathbf{e}_{0}, \ldots, \mathbf{e}_{d}$ to denote the standard unit vectors in \mathbf{R}^{d+1}.

Recently, Chang and Davis [2] proved that

$$
B_{n}(f, \cdot) \geqslant B_{n+1}(f, \cdot), \quad n \in \mathbf{N},
$$

for any convex function f on σ in the two-dimensional setting; Dahmen and Micchelli [4] extended this result to any \mathbf{R}^{d}. On the other hand, by the convergence property of $B_{n}(f, \cdot)$, it is easy to see that

$$
B_{n}(f, \cdot)=B_{n+1}(f, \cdot), \quad n \in \mathbf{N},
$$

on σ if and only if f is an affine function on σ.

In order to extend this study to piecewise polynomials, we consider an m th simplicial subdivision σ_{m} of σ (which will be defined precisely in Section 2). Using a degree-raising formula, we have, for any $f \in C(\sigma)$,

$$
\begin{aligned}
& B_{n m+1}(f, \cdot)-B_{n m}(f, \cdot) \\
& \quad=\sum_{|\alpha|=n m+1}\left[f\left(\mathbf{x}_{x, n m+1}\right)-\sum_{i=0}^{d} \frac{\alpha_{i}}{n m+1} f\left(\mathbf{x}_{\alpha-\mathbf{e}_{i}, n m}\right)\right] B_{\alpha, n m+1}(\cdot)
\end{aligned}
$$

on σ. Since

$$
\mathbf{x}_{x, n m+1}=\sum_{i=0}^{d} \frac{\alpha_{i}}{n m+1} \mathbf{x}_{\alpha-\mathbf{e}_{i}, n m},
$$

the assumption of convexity of f on each cell in σ_{m} yields

$$
f\left(\mathbf{x}_{\alpha, n m+1}\right)-\sum_{i=0}^{d} \frac{\alpha_{i}}{n m+1} f\left(\mathbf{x}_{x-\mathbf{e}_{i}, n m}\right) \leqslant 0
$$

Hence, we have the following result which is an extension of the polynomial result of Dahmen and Micchelli in [4] as stated above to piecewise polynomials.

Theorem 1. If f is convex on each cell in σ_{m}, then

$$
B_{n m}(f, \mathbf{x}) \geqslant B_{n m+1}(f, \mathbf{x}), \quad \mathbf{x} \in \sigma,
$$

and $n=1,2, \ldots$.
It is somewhat natural to believe that the inequality in Theorem 1 would become an identity if and only if $f \in S_{1}\left(\sigma_{m}\right)$, where $S_{k}\left(\sigma_{m}\right)$ denotes the space of continuous piecewise polynomials with total degree at most k on σ_{m}. The objective of this paper is to prove that indeed this statement holds. For the one-variable setting, this problem was already considered by Passow (see [7]). Our paper is organized as follows. In Section 2, we introduce a simplicial subdivision σ_{m} of the d-dimensional simplex σ and apply the degree-raising formula of Bernstein polynomials to derive a relation governing the coefficients for the identity $B_{n m}(f, \cdot)=B_{n m+1}(f, \cdot)$. The main results will be established in Section 3. We end this paper by proposing a conjecture for spline functions with total degree $k>1$.

2. Preliminaries

We begin by recalling some notations and terminologies. Observe that for $d=2$, if the B-net points $\left\{\mathbf{x}_{x_{, n}}\right\}_{|x|=n}$ on σ are considered as the vertices

FIG. 1. Triangulation $\sigma_{3}(d=2, n=3)$.
of the subtriangles, then they form an nth triangulation σ_{n} of σ (see Fig. 1). The elements of σ_{n} have the same area and are actually similar to σ. Clearly, there are n^{2} elements in σ_{n}. But for $d \geqslant 3$ the B-net points $\left\{\mathbf{x}_{x, n}\right\}_{|x|=n}$ do not give a complete simplicial subdivision as it can be seen in the following Figure 2, where $d=3$ and $n=2$. Nevertheless, according to [4], there is still a canonical way for constructing simplicial subdivisions of σ as follows, and this will allow us to apply an essential tool called "degree-raising argument". Let \mathscr{P} be the set of all permutations of $\{1,2, \ldots, d\}$ and define $\sigma_{\pi} \subset \mathbf{R}^{d}$ for $\pi \in \mathscr{P}$ via

$$
\begin{aligned}
\sigma_{\pi} & :=\left\{\mathbf{x} \in \mathbf{R}^{d}: 1 \geqslant x_{\pi(1)} \geqslant \cdots \geqslant x_{\pi(d)} \geqslant 0\right\} \\
& =\left[0, \mathbf{e}^{\pi(1)}, \mathbf{e}^{\pi(1)}+\mathbf{e}^{\pi(2)}, \ldots, \mathbf{e}^{\pi(1)}+\cdots+\mathbf{e}^{\pi(d)}\right] .
\end{aligned}
$$

Clearly, the collection $\left\{\sigma_{\pi}: \pi \in \mathscr{P}\right\}$ forms a simplicial subdivision of the unit cube, and in addition it is also shown in [3] that $\mathscr{T}=\left\{\sigma_{\pi}+\alpha: \alpha \in \mathbf{Z}^{d}, \pi \in \mathscr{P}\right\}$ is a simplicial subdivision of \mathbf{R}^{d}. Let $t \in \mathscr{P}$ denote the identity, so that $\mathscr{T}_{n}=(\mathscr{T} / n) \cap \sigma_{t}$ forms a simplicial subdivision of σ_{i} with vertices $\mathbf{v}=\left(v_{0}, \ldots, v_{d}\right) \in \mathbf{R}^{d}$ and $n v_{i}$ are nonnegative integers with $1 \geqslant v_{1} \geqslant \cdots \geqslant v_{d}$. Thus, for any affine map $A: \sigma_{t} \rightarrow \sigma$ and any $n \in \mathbf{N}$, the collection $\sigma_{A, n}=A\left(\mathscr{T}_{n}\right)$ forms an nth simplicial subdivision of σ. It is easy to see that there are n^{d} subsimplices in the nth subdivision $\sigma_{A, n}$ of σ. Let $\sigma_{A, n}=\left\{\hat{\sigma}_{n}^{k}\right\}_{k=1}^{n^{d}}$. We call the subsimplex $\hat{\sigma}_{n}^{k}$ a cell of $\sigma_{A, n}$. Since different choises of A only result in a permutation of the coordinates in σ, we will

Fig. 2. Incomplete triangulation of a tetrahedron.
choose the same affine map A to form subdivisions of σ in the following discussion. For instance, we may restrict our consideration to the special case $A(0)=\mathbf{v}^{0}$ and $A\left(\mathbf{e}^{1}+\cdots+\mathbf{e}^{k}\right)=\mathbf{v}^{k}, k=1,2, \ldots, d$, for which we will denote the nth subdivision of σ by σ_{n}. Here $\mathrm{e}^{i}, i=1, \ldots, d$, are the standard unit vectors in \mathbf{R}^{d}. For $d=2$, it can be verified that $\sigma_{A, n}$ is independent of A and agrees with the triangulation σ_{n} described earlier.

The following result is a consequence of the degree-raising formula for Bernstein polynomials. Since the proof is standard, we omit its proof and only refer the readers to [4].

Lemma 1. Let $f \in C(\sigma)$ and $n, m \in \mathbf{N}$. Then

$$
B_{n m}(f, \cdot)=B_{n m+1}(f, \cdot)
$$

if and only if

$$
\begin{equation*}
f\left(\mathbf{x}_{x, n m+1}\right)=\sum_{i=0}^{d} \frac{\alpha_{i}}{n m+1} f\left(\mathbf{x}_{\alpha-\mathbf{c}_{i}, n m}\right) \tag{1}
\end{equation*}
$$

for all $\alpha=\left(\alpha_{0}, \ldots, \alpha_{d}\right) \in \mathbf{Z}_{+}^{d+1}$ with $|\alpha|=n m+1$.
Remarks. 1. Here, we point out that even though $f\left(\mathbf{x}_{\alpha-\mathbf{e}_{i} . n m}\right)$ may not be defined for $\alpha_{i}=0$ in (1), the corresponding coefficient $\alpha_{i} /(n m+1)$ is zero anyway. In this paper, we always assume that $\mathbf{x}_{\boldsymbol{x}-\boldsymbol{e}_{i}, n}$ makes sense; in other words, in case $\alpha_{i}=0$, we automatically delete the corresponding B-net point $\mathbf{x}_{x-e_{i}, n}$.
2. The restriction $B_{n}(f, \cdot)=B_{n+1}(f, \cdot)$ shows that the function values of f at the $(n+1)$ st layer of B-net points $\mathbf{x}_{\alpha, n+1}$ is a convex combination of the values of f at some nth layer of B-net points, i.e.,

$$
\begin{equation*}
f\left(\mathbf{x}_{\alpha, n+1}\right)=\sum_{i=0}^{d} \frac{\alpha_{i}}{n+1} f\left(\mathbf{x}_{\alpha-\mathbf{e}_{i}, n}\right), \tag{2}
\end{equation*}
$$

where $\alpha=\left(\alpha_{0}, \ldots, \alpha_{d}\right) \in \mathbf{Z}_{+}^{d+1}$ with $|\alpha|=n+1$, and

$$
\begin{equation*}
\mathbf{x}_{\alpha, n+1}=\sum_{i=0}^{d} \frac{\alpha_{i}}{n+1} \mathbf{x}_{\alpha-\mathbf{e}_{i}, n} \tag{3}
\end{equation*}
$$

3. Main Results

For $m \in \mathbf{Z}_{+}$, let $\pi_{k}\left(\sigma_{m}\right)$ denote the space of piecewise polynomial functions on σ_{m} with total degree at most k. Also, let $S_{k}\left(\sigma_{m}\right)=\pi_{k}\left(\sigma_{m}\right) \cap C(\sigma)$. In this section, we derive a characterization of f that satisfies

$$
B_{n m}(f, \mathbf{x})=B_{n m+1}(f, \mathbf{x}), \quad \mathbf{x} \in \sigma, \quad n \in \mathbf{N}
$$

For $f \in C(\sigma)$, we recall that

$$
B_{n}(f, \cdot)=B_{n+1}(f, \cdot), \quad n \in \mathbf{N}
$$

on σ if and only if $f \in S_{1}(\sigma)$. For $m \geqslant 2$, this problem becomes much more complicated. The following theorems, namely, Theorems 2-4, may be considered to be generalizations of the results of [7] to the d-dimensional setting. Let $\sigma\left(\mathbf{x}_{x-\mathbf{e}_{0}, n}, \ldots, \mathbf{x}_{x-\mathbf{e}_{d, n}}\right)$ be the subsimplex with vertices $\mathbf{x}_{\alpha-\mathbf{e}_{0}, n}, \ldots, \mathbf{x}_{\alpha-\mathbf{e}_{d}, n}$. Our first result in this direction is the following.

Theorem 2. Let $f \in S_{1}\left(\sigma_{m}\right)$ and $n \in \mathbf{N}$. Then the total degree of the Bernstein polynomial $B_{m n+1}(f, \cdot)$ is at most mn. In particular,

$$
\begin{equation*}
B_{m n+1}(f, \cdot)=B_{m n}(f, \cdot), \quad n=1,2, \ldots . \tag{4}
\end{equation*}
$$

Proof. By Lemma 1, we have

$$
\begin{align*}
B_{n m+1} & (f, \cdot)-B_{n m}(f, \cdot) \\
& =\sum_{|x|=n m+1}\left[f\left(\mathbf{x}_{\alpha, n m+1}\right)-\sum_{i=0}^{d} \frac{\alpha_{i}}{n m+1} f\left(\mathbf{x}_{\alpha-\mathbf{e}_{i}, n m}\right)\right] B_{\alpha, n m+1}(\cdot) \tag{5}
\end{align*}
$$

We note that, for any B-net point $\mathbf{x}_{x, n m+1}$, there are cells

$$
\sigma\left(\mathbf{x}_{\alpha-\mathbf{e}_{0, n}, n m}, \ldots, \mathbf{x}_{\alpha-\mathbf{e}_{i}, n m}\right)
$$

in $\sigma_{n m}$ with the vertex set $\left\{\mathbf{x}_{x_{-\mathbf{e}_{1}}, n m}: i=0,1, \ldots, d\right\}$ and $\hat{\sigma}_{m}^{k}$ in σ_{m} such that

$$
\begin{gathered}
\mathbf{x}_{\mathbf{a}, n m+1} \in \sigma\left(\mathbf{x}_{x-\mathbf{e}_{0}, n m}, \ldots, \mathbf{x}_{x-\mathbf{e}_{d}, n m}\right), \\
\sigma\left(\mathbf{x}_{x-\mathbf{e}_{0}, n m}, \ldots, \mathbf{x}_{\alpha-\mathbf{e}_{d}, n m}\right) \subset \hat{\sigma}_{m}^{k}
\end{gathered}
$$

and for all $n \in \mathbf{N}$,

$$
\begin{equation*}
\mathbf{x}_{x-\mathbf{e}_{i}, n m} \in \hat{\sigma}_{m}^{k}, \quad i=0,1, \ldots, d \tag{6}
\end{equation*}
$$

By (3), we note that the barycentric coordinates of $\mathbf{x}_{\alpha, n m+1}$ with respect to the simplex $\sigma\left(\mathbf{x}_{x-\mathbf{e}_{0}, n m}, \ldots, \mathbf{x}_{\alpha-\mathbf{e}_{d}, n m}\right)$ is given by

$$
\left(\frac{\alpha_{0}}{m n+1}, \ldots, \frac{\alpha_{d}}{m n+1}\right)
$$

Because $f \in S_{1}\left(\sigma_{m}\right)$, it is an affine polynomial on any cell of the m th simplicial subdivision of σ. The linearity of f on $\hat{\sigma}_{m}^{k}$ shows that

$$
f\left(\mathbf{x}_{\alpha, m n+1}\right)=\sum_{i=0}^{d} \frac{\alpha_{i}}{m n+1} f\left(\mathbf{x}_{\alpha-\mathbf{e}_{i}, m n}\right)
$$

Hence, by applying (5), the conclusion follows.

Next we consider a partial converse of Theorem 2 in the case $m>1$. The full converse of Theorem 2 is still open even in the one-dimensional setting. We say that a function f is axially convex if it is convex in any direction parallel to the edges of the simplex σ (see [5] and the references therein), i.e.,

$$
f\left(t \mathbf{x}^{1}+(1-t) \mathbf{x}^{2}\right) \leqslant t f\left(\mathbf{x}^{1}\right)+(1-t) f\left(\mathbf{x}^{2}\right)
$$

holds for every $t \in[0,1]$ and any $\mathbf{x}^{1}, \mathbf{x}^{2}$ such that $\mathbf{x}^{1}-\mathbf{x}^{2}=\theta\left(\mathbf{v}^{i}-\mathbf{v}^{i}\right)$, for some $0 \leqslant i<j \leqslant d$ and some $\theta \in \mathbf{R}$. The same argument in the proof of Theorem 1 also gives

$$
B_{n m}(f, \mathbf{x}) \geqslant B_{n m+1}(f, \mathbf{x}), \quad x \in \sigma, \quad n \in \mathbf{N},
$$

whenever f is axially convex on each cell in σ_{m}.
We are now in a position to prove the following.
Theorem 3. Let $f \in C(\sigma)$ be axially convex in each cell in σ_{m}. If

$$
B_{m n+1}(f, \cdot)=B_{m n}(f, \cdot), \quad n \in \mathbf{N},
$$

then $f \in S_{1}\left(\sigma_{m}\right)$.
Proof. By the hypothesis and applying Lemma 1, we have

$$
\sum_{\ell=0}^{d} \frac{\alpha_{\ell}}{m n+1} f\left(\mathbf{x}_{\alpha-\mathbf{e}_{\ell, n}}\right)-f\left(\mathbf{x}_{\alpha, m n+1}\right)=0
$$

for any $n \in \mathbf{N}$ and $\alpha \in \mathbf{Z}_{+}^{d+1}$ with $|\alpha|=m n+1$. On the other hand, by (3), we have

$$
\mathbf{x}_{\alpha, m n+1}=\sum_{\ell=0}^{d} \frac{\alpha_{\ell}}{m n+1} \mathbf{x}_{x-\mathbf{e}_{\ell}, n m} .
$$

This shows that the point $\left(\mathbf{x}_{\alpha, m n+1}, f\left(\mathbf{x}_{\alpha, m n+1}\right)\right.$), which is on the surface $y=f(\mathbf{x})$, also lies on the graph of the affine function

$$
L(\mathbf{x})=\sum_{\ell=0}^{d} \xi_{\ell} f\left(\mathbf{x}_{x-\mathbf{e}_{\ell, n m}}\right),
$$

with $\mathbf{x} \in \sigma\left(\mathbf{x}_{\alpha-\mathbf{e}_{0}, m n}, \ldots, \mathbf{x}_{\alpha-\mathbf{e}_{d}, m n}\right)$ and $\left(\xi_{0}, \ldots, \xi_{d}\right)$ the barycentric coordinates of \mathbf{x} with respect to the cell $\sigma\left(\mathbf{x}_{\alpha-\mathbf{e}_{0}, n m}, \ldots, \mathbf{x}_{\alpha-\mathbf{e}_{d}, n m}\right), n=1,2, \ldots$. The axial convexity and continuity of f guarantee that f is an affine polynomial on each cell in σ_{m}, so that $f \in S_{1}\left(\sigma_{m}\right)$.

It is clear that convexity is a stronger condition than axial convexity. For example, the function $f(x, y)=-x y$ is axially convex but not convex on $\sigma=\{(x, y): x+y \leqslant 1, x, y \geqslant 0\}$. Hence, the following conclusion holds.

Corollary 1. Let $f \in C(\sigma)$ such that the restriction of f on each cell in σ_{m} is either convex or concave, and

$$
B_{n m+1}(f, \mathbf{x})=B_{n m}(f, \mathbf{x}), \quad \mathbf{x} \in \sigma, \quad n \in \mathbf{N} .
$$

Then $f \in S_{1}\left(\sigma_{m}\right)$.
Let $D\left(\sigma_{m}\right)$ denote the set of net points (or vertices) of the m th subdivision σ_{m} of σ. We also have the following.

Theorem 4. Let σ_{q} be a simplicial subdivision of the simplex $\sigma, D\left(\sigma_{q}\right)$ the set of net points of $\sigma_{q}, m \in \mathbf{N}$, and $f \in S_{1}\left(\sigma_{4}\right)$ such that

$$
B_{n m}(f, \mathbf{x})=B_{n m+1}(f, \mathbf{x}), \quad \mathbf{x} \in \sigma, \quad n \in \mathbf{N}
$$

Then $D\left(\sigma_{q}\right) \subset D\left(\sigma_{m}\right)$.
Proof. Suppose that σ^{*} is an arbitrary cell in σ_{m} and there exists some $\mathbf{x}^{*} \in D\left(\sigma_{q}\right) \cap \operatorname{Int}\left(\sigma^{*}\right)$. In addition, suppose that there are two d-dimensional subsimplices σ_{q}^{1} and σ_{q}^{2} in σ_{q} that have a common vertex \mathbf{x}^{*} and a common ($d-1$)-dimensional simplex, and that the planar surfaces defined by the restrictions of $f \in S_{1}\left(\sigma_{q}\right)$ on σ_{q}^{1} and σ_{q}^{2} have different normal vectors. Then we can find a neighborhood $N\left(\mathbf{x}^{*}\right)$ of \mathbf{x}^{*} such that $N\left(\mathbf{x}^{*}\right) \subset \operatorname{Int}\left(\sigma^{*}\right)$ and an open set $O \subset N\left(\mathbf{x}^{*}\right) \cap\left(\sigma_{q}^{1} \cup \sigma_{q}^{2}\right)$ such that $O \cap \sigma_{q}^{i} \neq \varnothing, i=1,2$. Obviously, f is convex (or concave) in O since it is piecewise linear; and so, for sufficiently large n, there exists a $(d+1)$-dimensional array

$$
K_{0}:\left\{\mathbf{x}_{\beta-\mathbf{e}_{0}, m n}, \ldots, \mathbf{x}_{\beta-\mathbf{e}_{d}, n m}\right\} \subset O
$$

for some points $\beta \in \mathbf{Z}_{+}^{d+1}$ with $|\beta|=n m+1$, and only some of the points in K_{0}, say $\mathbf{x}_{\beta-\mathbf{e}_{0}, n m}, \ldots, \mathbf{x}_{\beta-\mathbf{e}_{j}, n m}$ lie in $O \cap \sigma_{q}^{1}$, and the others are in $O \cap \sigma_{q}^{2}$.

Let us introduce an affine function

$$
g(\mathbf{x})=\sum_{\ell=0}^{d} \xi_{\ell} f\left(\mathbf{x}_{\beta-\mathbf{e}_{\ell}, n m}\right)
$$

where

$$
\mathbf{x}=\sum_{\ell=0}^{d} \xi_{\ell} \mathbf{x}_{\beta-\mathbf{e}_{\ell, n m}}, \quad 0 \leqslant \xi_{\ell} \leqslant 1, \quad \sum_{\ell=0}^{d} \xi_{\ell}=1 .
$$

Since f is convex (or concave) on O and the planar surfaces defined by the restrictions of f on $O \cap \sigma_{q}^{1}$ and $O \cap \sigma_{q}^{2}$ have different normal vectors, we have, for any $\mathbf{x} \in \sigma\left(\mathbf{x}_{\beta-e_{0}, n m}, \ldots, \mathbf{x}_{\beta-\mathbf{e}_{d}, n m}\right)$,

$$
f(\mathbf{x})<g(\mathbf{x}) \quad(\text { or } f(\mathbf{x})>g(\mathbf{x})) .
$$

Therefore, without loss of generality, we may assume that f is convex. By (3) and (6), we have

$$
f\left(\mathbf{x}_{\beta, m n+1}\right)<\sum_{\ell=0}^{d} \frac{\beta_{l}}{m n+1} f\left(\mathbf{x}_{\beta-\mathrm{e}_{\ell, n m}}\right) .
$$

On the other hand, by the assumption

$$
B_{m n+1}(f, \mathbf{x})=B_{m n}(f, \mathbf{x})
$$

and Lemma 1, we obtain

$$
f\left(\mathbf{x}_{\beta, m n+1}\right)=\sum_{\ell=0}^{d} \frac{\beta_{\ell}}{m n+1} f\left(\mathbf{x}_{\beta-e_{\ell}, n m}\right) .
$$

This contradiction shows that

$$
\mathbf{x}^{*} \notin \operatorname{Int}\left(\sigma^{*}\right) .
$$

Furthermore, since the Bernstein polynomial on the boundary $\partial \sigma$ could be obtained by restricting $B_{n}(f, \cdot)$ to $\partial \sigma$, Lemma 1 still holds even if we restrict ourselves to the boundary of σ. So, applying the same argument to $\partial \sigma$, we may conclude that \mathbf{x}^{*} is not in the relative interior of $\partial \sigma^{*}$. By repeating this procedure on the lower dimensional boundaries, we have $\mathbf{x}^{*} \in D\left(\sigma_{m}\right)$. This completes the proof of Theorem 4.

It is natural to ask the possibility of extending our results to $S_{k}\left(\sigma_{m}\right)$, $k>1$. In this regard, we believe that Theorem 3 holds mainly because of the affine polynomial reproduction property of the Bernstein operator $B_{n}(f, \cdot)$. Let us consider certain linear combinations of Bernstein polynomials introduced first by Butzer [1] in the univariate case and by Wu [8] in the multidimensional setting, for reproducing polynomials $p \in \pi_{k}$. More precisely, let $L_{n}^{(0)}=B_{n}$, and define $L_{n}^{(k)}$ recursively by

$$
L_{n}^{(k)}=\left(2^{k}-1\right)^{-1}\left(2^{k} L_{2 n}^{(k-1)}-L_{n}^{(k-1)}\right), \quad k=1,2, \ldots
$$

Then

$$
L_{n}^{(k)} p=p \quad \forall p \in \pi_{k+1},
$$

(see $[6,8]$). An extension to $S_{k}\left(\sigma_{m}\right)$ can be formulated as follows.
Conjecture. Let σ_{m} be the m th simplicial subdivision of $\sigma, m \in \mathbf{N}$, and k be any positive integer. Then

$$
f \in S_{k}\left(\sigma_{m}\right) \cap C(\sigma)
$$

if and only if

$$
A^{k+1} L_{n m}^{(k)}(f, \cdot)=0, \quad n \in \mathbf{N}
$$

where Δ is the difference operator defined by

$$
\Delta L_{n}=L_{n+1}-L_{n}
$$

and $\Delta^{k+1}=\Delta^{k} \Delta$.

Acknowledgment

The authors are very grateful to the referees for their comments which helped improve the writing of the paper.

References

1. P. L. Butzer, Linear combinations of Bernstein polynomials, Canad. J. Math 5 (1953), 559-567.
2. G. Z. Chang and P. J. Davis, The convexity of Bernstein polynomials over triangles, J. Approx. Theory 40 (1984), 12-28.
3. W. Dahmen and C. A. Micchelle, Recent progress in multivariate splines, in "Approximation Theory IV" (C. K. Chui, L. L. Schumaker, and J. D. Ward, Eds.), pp. 27-121, Academic Press, Boston, 1983.
4. W. Dahmen and C. A. Miccheli, Convexity of multivariate Bernstein polynomials and box spline surfaces, Stud. Sci. Hungar. 23 (1988), 265-287.
5. W. Dahmen, Convexity and Bernstein-Bézier polynomials, in "Curves and Surfaces" (P. L. Laurent, A. L. Méhauté, and L. L. Schumaker, Eds.), pp. 107-134, Academic Press, Boston, 1991.
6. Z. Ditzian, A global inverse theorem for combinations of Bernstein polynomials, J. Approx. Theory 26 (1979), 277-292.
7. E. Passow, Deficient Bernstein polynomials, J. Approx. Theory 59 (1989), 282-285.
8. Z. C. Wu, Linear combinations of Bernstein operators on a simplex, Approx. Theory Appl. 7, No. 1 (1991), 81-90.

[^0]: * Research supported by NSF Grants DMS-89-01345 and DMS-92-06928.
 ${ }^{+}$The permanent address of the third author is Department of Mathematics, Zhenjiang Teacher's College, Jiangsu 212003, People's Republic of China.

