On the Degree of Multivariate Bernstein Polynomial Operators*

CHARLES K. CHUI, DONG HONG, AND SHUN-TANG WU[†]

Department of Mathematics, Texas A & M University, College Station, Texas 77843

Communicated by Zeev Ditzian

Received February 21, 1992; accepted in revised form March 23, 1993

Let σ be a d-dimensional simplex with vertices $v^0, ..., v^d$ and $B_n(f, \cdot)$ denote the *n*th degree Bernstein polynomial of a continuous function f on σ . Dahmen and Micchelli (*Stud. Sci. Hungar.* 23 (1988), 265-287) proved that $B_n(f, \cdot) \ge B_{n+1}(f, \cdot)$, $n \in \mathbb{N}$, for any convex function f on σ , and it is clear that a necessary and sufficient condition for the inequality to become an identity for all $n \in \mathbb{N}$ is that f is an affine polynomial. Let σ_m be the *m*th simplicial subdivision of σ (which will be defined precisely later). By using a degree-raising formula, the result of Dahmen and Micchelli can be extended to $B_{mn}(f, \cdot) \ge B_{mn+1}(f, \cdot)$, $n \in \mathbb{N}$, for any f which is convex on every cell of σ_m . The objective of this paper is to derive conditions under which this inequality becomes an identity. \mathbb{O} 1994 Academic Press, Inc.

1. INTRODUCTION

As usual, let **R** denote the set of real numbers, \mathbb{Z}_+ the set of all nonnegative integers and $\mathbb{N} = \mathbb{Z}_+ \setminus \{0\}$. Thus, \mathbb{R}^d is the *d*-dimensional Euclidean space and \mathbb{Z}_+^d can be used as a multi-index set. Let σ be a *d*-dimensional simplex with vertex set $V = \{\mathbf{v}^0, ..., \mathbf{v}^d\}$. Here, we assume that $\mathbf{v}^i \in \mathbb{R}^d$, i = 0, ..., d, are in the general position, namely, the vectors $\mathbf{v}^i - \mathbf{v}^0$, i = 1, ..., d, are lineary independent. It is clear that, for any $\mathbf{x} \in \mathbb{R}^d$, there exists a unique $\xi = (\xi_0, ..., \xi_d) \in \mathbb{R}^{d+1}$ such that

$$\mathbf{x} = \sum_{i=0}^{d} \xi_i \mathbf{v}^i, \qquad \sum_{i=0}^{d} \xi_i = 1.$$

The coefficient (d+1)-tuple $\xi = (\xi_0, ..., \xi_d)$ is called the barycentric coordinates of x with respect to the simplex σ .

0021-9045/94 \$6.00 Copyright © 1994 by Academic Press, Inc. All rights of reproduction in any form reserved.

^{*} Research supported by NSF Grants DMS-89-01345 and DMS-92-06928.

^t The permanent address of the third author is Department of Mathematics, Zhenjiang Teacher's College, Jiangsu 212003, People's Republic of China.

Let $\alpha = (\alpha_0, ..., \alpha_d) \in \mathbb{Z}_+^{d+1}$ be a multi-index with

$$|\alpha| := \sum_{i=0}^{d} \alpha_i = n.$$

The Bernstein polynomial basis of degree n is given by

$$B_{\alpha,n}(\mathbf{x}) = {n \choose \alpha} \xi^{\alpha}, \quad \mathbf{x} \in \sigma, \quad |\alpha| = n,$$

with

$$\binom{n}{\alpha} = \frac{n!}{\alpha_0! \alpha_1! \cdots \alpha_d!}$$

and $\xi^{\alpha} = \xi_0^{\alpha_0} \xi_1^{\alpha_1} \cdots \xi_d^{\alpha_d}$. Clearly,

$$B_{\alpha, n}(\mathbf{x}) \ge 0$$
 for $\mathbf{x} \in \sigma$, and $\sum_{|\alpha|=n} B_{\alpha, n}(\mathbf{x}) = 1$.

Associated with any $f \in C(\sigma)$, the *n*th Bernstein polynomial of f on σ is defined by

$$B_n(f, \mathbf{x}) := \sum_{|\alpha| = n} f(\mathbf{x}_{\alpha, n}) B_{\alpha, n}(\mathbf{x}),$$

where

$$\mathbf{x}_{\alpha,n} := \frac{1}{n} \sum_{i=0}^{d} \alpha_i \mathbf{v}^i, \qquad |\alpha| = n,$$

are called the *n*th *B*-net points of σ . Observe that there are $\binom{n+d}{d}$ *n*th *B*-net points on σ . Let \mathbf{e}^i , i = 1, ..., d, denote the standard unit vectors in \mathbf{R}^d . In order to avoid an additional subscript or superscript, we will use $\mathbf{e}_0, ..., \mathbf{e}_d$ to denote the standard unit vectors in \mathbf{R}^{d+1} .

Recently, Chang and Davis [2] proved that

$$B_n(f, \cdot) \ge B_{n+1}(f, \cdot), \qquad n \in \mathbb{N},$$

for any convex function f on σ in the two-dimensional setting; Dahmen and Micchelli [4] extended this result to any \mathbb{R}^d . On the other hand, by the convergence property of $B_n(f, \cdot)$, it is easy to see that

$$B_n(f, \cdot) = B_{n+1}(f, \cdot), \qquad n \in \mathbb{N},$$

on σ if and only if f is an affine function on σ .

In order to extend this study to piecewise polynomials, we consider an *m*th simplicial subdivision σ_m of σ (which will be defined precisely in Section 2). Using a *degree-raising* formula, we have, for any $f \in C(\sigma)$,

$$B_{nm+1}(f, \cdot) - B_{nm}(f, \cdot) = \sum_{|\alpha| = nm+1} \left[f(\mathbf{x}_{\alpha, nm+1}) - \sum_{i=0}^{d} \frac{\alpha_{i}}{nm+1} f(\mathbf{x}_{\alpha - \mathbf{e}_{i}, nm}) \right] B_{\alpha, nm+1}(\cdot)$$

on σ . Since

$$\mathbf{x}_{\alpha, nm+1} = \sum_{i=0}^{d} \frac{\alpha_i}{nm+1} \, \mathbf{x}_{\alpha - \mathbf{e}_i, nm},$$

the assumption of convexity of f on each cell in σ_m yields

$$f(\mathbf{x}_{\alpha,nm+1}) - \sum_{i=0}^{d} \frac{\alpha_i}{nm+1} f(\mathbf{x}_{\alpha-\mathbf{e}_i,nm}) \leq 0.$$

Hence, we have the following result which is an extension of the polynomial result of Dahmen and Micchelli in [4] as stated above to piecewise polynomials.

THEOREM 1. If f is convex on each cell in σ_m , then

$$B_{nm}(f, \mathbf{x}) \ge B_{nm+1}(f, \mathbf{x}), \qquad \mathbf{x} \in \sigma,$$

and n = 1, 2, ...

It is somewhat natural to believe that the inequality in Theorem 1 would become an identity if and only if $f \in S_1(\sigma_m)$, where $S_k(\sigma_m)$ denotes the space of continuous piecewise polynomials with total degree at most k on σ_m . The objective of this paper is to prove that indeed this statement holds. For the one-variable setting, this problem was already considered by Passow (see [7]). Our paper is organized as follows. In Section 2, we introduce a simplicial subdivision σ_m of the *d*-dimensional simplex σ and apply the *degree-raising* formula of Bernstein polynomials to derive a relation governing the coefficients for the identity $B_{nm}(f, \cdot) = B_{nm+1}(f, \cdot)$. The main results will be established in Section 3. We end this paper by proposing a conjecture for spline functions with total degree k > 1.

2. PRELIMINARIES

We begin by recalling some notations and terminologies. Observe that for d = 2, if the *B*-net points $\{\mathbf{x}_{\alpha,n}\}_{|\alpha|=n}$ on σ are considered as the vertices

FIG. 1. Triangulation σ_3 (d = 2, n = 3).

of the subtriangles, then they form an *n*th triangulation σ_n of σ (see Fig. 1). The elements of σ_n have the same area and are actually similar to σ . Clearly, there are n^2 elements in σ_n . But for $d \ge 3$ the *B*-net points $\{\mathbf{x}_{\alpha,n}\}_{|\alpha|=n}$ do not give a complete simplicial subdivision as it can be seen in the following Figure 2, where d=3 and n=2. Nevertheless, according to [4], there is still a canonical way for constructing simplicial subdivisions of σ as follows, and this will allow us to apply an essential tool called "degree-raising argument". Let \mathscr{P} be the set of all permutations of $\{1, 2, ..., d\}$ and define $\sigma_{\pi} \subset \mathbb{R}^d$ for $\pi \in \mathscr{P}$ via

$$\sigma_{\pi} := \left\{ \mathbf{x} \in \mathbf{R}^{d} : \mathbf{1} \ge x_{\pi(1)} \ge \cdots \ge x_{\pi(d)} \ge \mathbf{0} \right\}$$
$$= \left[\mathbf{0}, \mathbf{e}^{\pi(1)}, \mathbf{e}^{\pi(1)} + \mathbf{e}^{\pi(2)}, ..., \mathbf{e}^{\pi(1)} + \cdots + \mathbf{e}^{\pi(d)} \right].$$

Clearly, the collection $\{\sigma_n : n \in \mathcal{P}\}$ forms a simplicial subdivision of the unit cube, and in addition it is also shown in [3] that $\mathcal{T} = \{\sigma_n + \alpha : \alpha \in \mathbb{Z}^d, n \in \mathcal{P}\}\$ is a simplicial subdivision of \mathbb{R}^d . Let $i \in \mathcal{P}$ denote the identity, so that $\mathcal{T}_n = (\mathcal{T}/n) \cap \sigma_i$ forms a simplicial subdivision of σ_i with vertices $\mathbf{v} = (v_0, ..., v_d) \in \mathbb{R}^d$ and nv_i are nonnegative integers with $1 \ge v_1 \ge \cdots \ge v_d$. Thus, for any affine map $A: \sigma_i \to \sigma$ and any $n \in \mathbb{N}$, the collection $\sigma_{A,n} = A(\mathcal{T}_n)$ forms an *n*th simplicial subdivision of σ . It is easy to see that there are n^d subsimplices in the *n*th subdivision $\sigma_{A,n}$ of σ . Let $\sigma_{A,n} = \{\hat{\sigma}_n^k\}_{k=1}^{nd}$. We call the subsimplex $\hat{\sigma}_n^k$ a cell of $\sigma_{A,n}$. Since different choises of A only result in a permutation of the coordinates in σ , we will

FIG. 2. Incomplete triangulation of a tetrahedron.

choose the same affine map A to form subdivisions of σ in the following discussion. For instance, we may restrict our consideration to the special case $A(0) = \mathbf{v}^0$ and $A(\mathbf{e}^1 + \dots + \mathbf{e}^k) = \mathbf{v}^k$, k = 1, 2, ..., d, for which we will denote the *n*th subdivision of σ by σ_n . Here \mathbf{e}^i , i = 1, ..., d, are the standard unit vectors in \mathbf{R}^d . For d = 2, it can be verified that $\sigma_{A,n}$ is independent of A and agrees with the triangulation σ_n described earlier.

The following result is a consequence of the degree-raising formula for Bernstein polynomials. Since the proof is standard, we omit its proof and only refer the readers to [4].

LEMMA 1. Let $f \in C(\sigma)$ and $n, m \in \mathbb{N}$. Then

$$\boldsymbol{B}_{nm}(f,\,\cdot\,) = \boldsymbol{B}_{nm\,+\,1}(f,\,\cdot\,)$$

if and only if

$$f(\mathbf{x}_{\alpha,nm+1}) = \sum_{i=0}^{d} \frac{\alpha_i}{nm+1} f(\mathbf{x}_{\alpha-\mathbf{e}_i,nm})$$
(1)

for all $\alpha = (\alpha_0, ..., \alpha_d) \in \mathbb{Z}_+^{d+1}$ with $|\alpha| = nm + 1$.

Remarks. 1. Here, we point out that even though $f(\mathbf{x}_{\alpha-\mathbf{e}_i,nm})$ may not be defined for $\alpha_i = 0$ in (1), the corresponding coefficient $\alpha_i/(nm+1)$ is zero anyway. In this paper, we always assume that $\mathbf{x}_{\alpha-\mathbf{e}_i,n}$ makes sense; in other words, in case $\alpha_i = 0$, we automatically delete the corresponding *B*-net point $\mathbf{x}_{\alpha-\mathbf{e}_i,n}$.

2. The restriction $B_n(f, \cdot) = B_{n+1}(f, \cdot)$ shows that the function values of f at the (n+1)st layer of B-net points $\mathbf{x}_{\alpha, n+1}$ is a convex combination of the values of f at some nth layer of B-net points, i.e.,

$$f(\mathbf{x}_{\alpha,n+1}) = \sum_{i=0}^{d} \frac{\alpha_i}{n+1} f(\mathbf{x}_{\alpha-\mathbf{e}_i,n}), \qquad (2)$$

where $\alpha = (\alpha_0, ..., \alpha_d) \in \mathbb{Z}_+^{d+1}$ with $|\alpha| = n+1$, and

$$\mathbf{x}_{\alpha,n+1} = \sum_{i=0}^{d} \frac{\alpha_i}{n+1} \, \mathbf{x}_{\alpha-\mathbf{e}_i,n}. \tag{3}$$

3. MAIN RESULTS

For $m \in \mathbb{Z}_+$, let $\pi_k(\sigma_m)$ denote the space of piecewise polynomial functions on σ_m with total degree at most k. Also, let $S_k(\sigma_m) = \pi_k(\sigma_m) \cap C(\sigma)$. In this section, we derive a characterization of f that satisfies

$$B_{nm}(f, \mathbf{x}) = B_{nm+1}(f, \mathbf{x}), \quad \mathbf{x} \in \sigma, \quad n \in \mathbf{N}.$$

For $f \in C(\sigma)$, we recall that

$$B_n(f, \cdot) = B_{n+1}(f, \cdot), \quad n \in \mathbb{N},$$

on σ if and only if $f \in S_1(\sigma)$. For $m \ge 2$, this problem becomes much more complicated. The following theorems, namely, Theorems 2-4, may be considered to be generalizations of the results of [7] to the *d*-dimensional setting. Let $\sigma(\mathbf{x}_{\alpha-\mathbf{e}_0,n},...,\mathbf{x}_{\alpha-\mathbf{e}_d,n})$ be the subsimplex with vertices $\mathbf{x}_{\alpha-\mathbf{e}_0,n},...,\mathbf{x}_{\alpha-\mathbf{e}_d,n}$. Our first result in this direction is the following.

THEOREM 2. Let $f \in S_1(\sigma_m)$ and $n \in \mathbb{N}$. Then the total degree of the Bernstein polynomial $B_{mn+1}(f, \cdot)$ is at most mn. In particular,

$$B_{mn+1}(f, \cdot) = B_{mn}(f, \cdot), \qquad n = 1, 2, \dots.$$
(4)

Proof. By Lemma 1, we have

$$B_{nm+1}(f,\cdot) - B_{nm}(f,\cdot)$$

$$= \sum_{|\alpha| = nm+1} \left[f(\mathbf{x}_{\alpha,nm+1}) - \sum_{i=0}^{d} \frac{\alpha_{i}}{nm+1} f(\mathbf{x}_{\alpha-\mathbf{e}_{i},nm}) \right] B_{\alpha,nm+1}(\cdot). \quad (5)$$

We note that, for any *B*-net point $\mathbf{x}_{\alpha,nm+1}$, there are cells

$$\sigma(\mathbf{X}_{\alpha = \mathbf{e}_0, nm}, ..., \mathbf{X}_{\alpha = \mathbf{e}_d, nm})$$

in σ_{nm} with the vertex set $\{\mathbf{x}_{\alpha-\mathbf{e}_i,nm}: i=0, 1, ..., d\}$ and $\hat{\sigma}_m^k$ in σ_m such that

$$\begin{aligned} \mathbf{x}_{\mathbf{a}, nm+1} &\in \sigma(\mathbf{x}_{\alpha-\mathbf{e}_{0}, nm}, ..., \mathbf{x}_{\alpha-\mathbf{e}_{d}, nm}) \\ \sigma(\mathbf{x}_{\alpha-\mathbf{e}_{0}, nm}, ..., \mathbf{x}_{\alpha-\mathbf{e}_{d}, nm}) &\subset \hat{\sigma}_{m}^{k}, \end{aligned}$$

and for all $n \in \mathbb{N}$,

$$\mathbf{x}_{\alpha = \mathbf{e}_i, nm} \in \hat{\sigma}_m^k, \qquad i = 0, 1, ..., d.$$
(6)

By (3), we note that the barycentric coordinates of $\mathbf{x}_{\alpha, nm+1}$ with respect to the simplex $\sigma(\mathbf{x}_{\alpha-e_0, nm}, ..., \mathbf{x}_{\alpha-e_d, nm})$ is given by

$$\left(\frac{\alpha_0}{mn+1},...,\frac{\alpha_d}{mn+1}\right).$$

Because $f \in S_1(\sigma_m)$, it is an affine polynomial on any cell of the *m*th simplicial subdivision of σ . The linearity of f on $\hat{\sigma}_m^k$ shows that

$$f(\mathbf{x}_{\alpha, mn+1}) = \sum_{i=0}^{d} \frac{\alpha_i}{mn+1} f(\mathbf{x}_{\alpha-\mathbf{e}_i, mn}).$$

Hence, by applying (5), the conclusion follows.

Next we consider a partial converse of Theorem 2 in the case m > 1. The full converse of Theorem 2 is still open even in the one-dimensional setting. We say that a function f is axially convex if it is convex in any direction parallel to the edges of the simplex σ (see [5] and the references therein), i.e.,

$$f(t\mathbf{x}^{1} + (1-t)\mathbf{x}^{2}) \leq tf(\mathbf{x}^{1}) + (1-t)f(\mathbf{x}^{2})$$

holds for every $t \in [0, 1]$ and any $\mathbf{x}^1, \mathbf{x}^2$ such that $\mathbf{x}^1 - \mathbf{x}^2 = \theta(\mathbf{v}^i - \mathbf{v}^j)$, for some $0 \le i < j \le d$ and some $\theta \in \mathbf{R}$. The same argument in the proof of Theorem 1 also gives

$$B_{nm}(f, \mathbf{x}) \ge B_{nm+1}(f, \mathbf{x}), \qquad x \in \sigma, \quad n \in \mathbb{N},$$

whenever f is axially convex on each cell in σ_m .

We are now in a position to prove the following.

THEOREM 3. Let $f \in C(\sigma)$ be axially convex in each cell in σ_m . If

$$B_{mn+1}(f, \cdot) = B_{mn}(f, \cdot), \qquad n \in \mathbb{N},$$

then $f \in S_1(\sigma_m)$.

Proof. By the hypothesis and applying Lemma 1, we have

$$\sum_{\ell=0}^{d} \frac{\alpha_{\ell}}{mn+1} f(\mathbf{x}_{\alpha-\mathbf{e}_{\ell},nm}) - f(\mathbf{x}_{\alpha,mn+1}) = 0,$$

for any $n \in \mathbb{N}$ and $\alpha \in \mathbb{Z}_{+}^{d+1}$ with $|\alpha| = mn + 1$. On the other hand, by (3), we have

$$\mathbf{x}_{\alpha, mn+1} = \sum_{\ell=0}^{d} \frac{\alpha_{\ell}}{mn+1} \, \mathbf{x}_{\alpha-e_{\ell}, nm}.$$

This shows that the point $(\mathbf{x}_{\alpha,mn+1}, f(\mathbf{x}_{\alpha,mn+1}))$, which is on the surface $y = f(\mathbf{x})$, also lies on the graph of the affine function

$$L(\mathbf{x}) = \sum_{\ell=0}^{d} \xi_{\ell} f(\mathbf{x}_{\alpha-\mathbf{e}_{\ell},nm}),$$

with $\mathbf{x} \in \sigma(\mathbf{x}_{\alpha-\mathbf{e}_0, mn}, ..., \mathbf{x}_{\alpha-\mathbf{e}_d, mn})$ and $(\xi_0, ..., \xi_d)$ the barycentric coordinates of \mathbf{x} with respect to the cell $\sigma(\mathbf{x}_{\alpha-\mathbf{e}_0, nm}, ..., \mathbf{x}_{\alpha-\mathbf{e}_d, nm}), n = 1, 2, ...$. The axial convexity and continuity of f guarantee that f is an affine polynomial on each cell in σ_m , so that $f \in S_1(\sigma_m)$.

It is clear that convexity is a stronger condition than axial convexity. For example, the function f(x, y) = -xy is axially convex but not convex on $\sigma = \{(x, y): x + y \le 1, x, y \ge 0\}$. Hence, the following conclusion holds.

COROLLARY 1. Let $f \in C(\sigma)$ such that the restriction of f on each cell in σ_m is either convex or concave, and

$$B_{nm+1}(f, \mathbf{x}) = B_{nm}(f, \mathbf{x}), \qquad \mathbf{x} \in \sigma, \quad n \in \mathbf{N}.$$

Then $f \in S_1(\sigma_m)$.

Let $D(\sigma_m)$ denote the set of net points (or vertices) of the *m*th subdivision σ_m of σ . We also have the following.

THEOREM 4. Let σ_q be a simplicial subdivision of the simplex σ , $D(\sigma_q)$ the set of net points of σ_q , $m \in \mathbb{N}$, and $f \in S_1(\sigma_q)$ such that

$$B_{nm}(f, \mathbf{x}) = B_{nm+1}(f, \mathbf{x}), \qquad \mathbf{x} \in \sigma, \quad n \in \mathbb{N}.$$

Then $D(\sigma_a) \subset D(\sigma_m)$.

Proof. Suppose that σ^* is an arbitrary cell in σ_m and there exists some $\mathbf{x}^* \in D(\sigma_q) \cap \operatorname{Int}(\sigma^*)$. In addition, suppose that there are two d-dimensional subsimplices σ_q^1 and σ_q^2 in σ_q that have a common vertex \mathbf{x}^* and a common (d-1)-dimensional simplex, and that the planar surfaces defined by the restrictions of $f \in S_1(\sigma_q)$ on σ_q^1 and σ_q^2 have different normal vectors. Then we can find a neighborhood $N(\mathbf{x}^*)$ of \mathbf{x}^* such that $N(\mathbf{x}^*) \subset \operatorname{Int}(\sigma^*)$ and an open set $O \subset N(\mathbf{x}^*) \cap (\sigma_q^1 \cup \sigma_q^2)$ such that $O \cap \sigma_q^i \neq \emptyset$, i = 1, 2. Obviously, f is convex (or concave) in O since it is piecewise linear; and so, for sufficiently large n, there exists a (d+1)-dimensional array

$$K_0: \{\mathbf{x}_{\beta-\mathbf{e}_0, mn}, ..., \mathbf{x}_{\beta-\mathbf{e}_d, nm}\} \subset O$$

for some points $\beta \in \mathbb{Z}_{+}^{d+1}$ with $|\beta| = nm + 1$, and only some of the points in K_0 , say $\mathbf{x}_{\beta - \mathbf{e}_0, nm}, ..., \mathbf{x}_{\beta - \mathbf{e}_j, nm}$ lie in $O \cap \sigma_q^1$, and the others are in $O \cap \sigma_q^2$.

Let us introduce an affine function

$$g(\mathbf{x}) = \sum_{\ell=0}^{d} \xi_{\ell} f(\mathbf{x}_{\beta - \mathbf{e}_{\ell}, nm}),$$

where

$$\mathbf{x} = \sum_{\ell=0}^{d} \xi_{\ell} \mathbf{x}_{\beta - \mathbf{e}_{\ell}, nm}, \qquad 0 \leqslant \xi_{\ell} \leqslant 1, \qquad \sum_{\ell=0}^{d} \xi_{\ell} = 1.$$

Since f is convex (or concave) on O and the planar surfaces defined by the restrictions of f on $O \cap \sigma_q^1$ and $O \cap \sigma_q^2$ have different normal vectors, we have, for any $\mathbf{x} \in \sigma(\mathbf{x}_{\beta - \mathbf{e}_0, nm}, ..., \mathbf{x}_{\beta - \mathbf{e}_d, nm})$,

$$f(\mathbf{x}) < g(\mathbf{x}) \qquad \text{(or } f(\mathbf{x}) > g(\mathbf{x})).$$

Therefore, without loss of generality, we may assume that f is convex. By (3) and (6), we have

$$f(\mathbf{x}_{\beta,mn+1}) < \sum_{\ell=0}^{d} \frac{\beta_{\ell}}{mn+1} f(\mathbf{x}_{\beta-\mathbf{e}_{\ell},nm}).$$

On the other hand, by the assumption

$$B_{mn+1}(f, \mathbf{x}) = B_{mn}(f, \mathbf{x})$$

and Lemma 1, we obtain

$$f(\mathbf{x}_{\beta,mn+1}) = \sum_{\ell=0}^{d} \frac{\beta_{\ell}}{mn+1} f(\mathbf{x}_{\beta-e_{\ell},nm}).$$

This contradiction shows that

 $\mathbf{x^*} \notin \text{Int}(\sigma^*).$

Furthermore, since the Bernstein polynomial on the boundary $\partial \sigma$ could be obtained by restricting $B_n(f, \cdot)$ to $\partial \sigma$, Lemma 1 still holds even if we restrict ourselves to the boundary of σ . So, applying the same argument to $\partial \sigma$, we may conclude that \mathbf{x}^* is not in the relative interior of $\partial \sigma^*$. By repeating this procedure on the lower dimensional boundaries, we have $\mathbf{x}^* \in D(\sigma_m)$. This completes the proof of Theorem 4.

It is natural to ask the possibility of extending our results to $S_k(\sigma_m)$, k > 1. In this regard, we believe that Theorem 3 holds mainly because of the affine polynomial reproduction property of the Bernstein operator $B_n(f, \cdot)$. Let us consider certain linear combinations of Bernstein polynomials introduced first by Butzer [1] in the univariate case and by Wu [8] in the multidimensional setting, for reproducing polynomials $p \in \pi_k$. More precisely, let $L_n^{(0)} = B_n$, and define $L_n^{(k)}$ recursively by

$$L_n^{(k)} = (2^k - 1)^{-1} (2^k L_{2n}^{(k-1)} - L_n^{(k-1)}), \qquad k = 1, 2, ...$$

Then

$$L_n^{(k)} p = p \qquad \forall p \in \pi_{k+1},$$

(see [6, 8]). An extension to $S_k(\sigma_m)$ can be formulated as follows.

Conjecture. Let σ_m be the *m*th simplicial subdivision of σ , $m \in \mathbb{N}$, and k be any positive integer. Then

$$f \in S_k(\sigma_m) \cap C(\sigma)$$

if and only if

$$\Delta^{k+1} L_{nm}^{(k)}(f, \cdot) = 0, \qquad n \in \mathbb{N},$$

where Δ is the difference operator defined by

$$\Delta L_n = L_{n+1} - L_n,$$

and $\Delta^{k+1} = \Delta^k \Delta$.

ACKNOWLEDGMENT

The authors are very grateful to the referees for their comments which helped improve the writing of the paper.

REFERENCES

- 1. P. L. BUTZER, Linear combinations of Bernstein polynomials, Canad. J. Math. 5 (1953), 559-567.
- G. Z. CHANG AND P. J. DAVIS, The convexity of Bernstein polynomials over triangles, J. Approx. Theory 40 (1984), 12-28.
- W. DAHMEN AND C. A. MICCHELLI, Recent progress in multivariate splines, in "Approximation Theory IV" (C. K. Chui, L. L. Schumaker, and J. D. Ward, Eds.), pp. 27-121, Academic Press, Boston, 1983.
- 4. W. DAHMEN AND C. A. MICCHELI, Convexity of multivariate Bernstein polynomials and box spline surfaces, *Stud. Sci. Hungar.* 23 (1988), 265–287.
- W. DAHMEN, Convexity and Bernstein-Bézier polynomials, in "Curves and Surfaces" (P. L. Laurent, A. L. Méhauté, and L. L. Schumaker, Eds.), pp. 107-134, Academic Press, Boston, 1991.
- Z. DITZIAN, A global inverse theorem for combinations of Bernstein polynomials, J. Approx. Theory 26 (1979), 277-292.
- 7. E. Passow, Deficient Bernstein polynomials, J. Approx. Theory 59 (1989), 282-285.
- 8. Z. C. WU, Linear combinations of Bernstein operators on a simplex, *Approx. Theory Appl.* 7, No. 1 (1991), 81-90.