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Let a be a d-dimensional simplex with vertices vo, ..., vd and Bn(f, .) denote the
nth degree Bernstein polynomial of a continuous function f on a. Dahmen and
Micchelli (Stud. Sci. Hungar. 23 (1988), 265-287) proved that Bn(f, .) ~ B n+ ,(f, .),

n EN, for any convex function f on a, and it is clear that a necessary and sufficient
condition for the inequality to become an identity for all n E N is that f is an affine
polynomial. Let am be the mth simplicial subdivision of a (which will be defined
precisely later). By using a degree-raising formula, the result of Dahmen and
Micchelli can be extended to Bm.(f,·) ~ B mn + Iff, '), n E N, for any f which is
convex on every cell of am' The objective of this paper is to derive conditions under
which this inequality becomes an identity. !l) 1994 Academic Press. Inc.

1. INTRODUCTION

As usual, let R denote the set of real numbers, Z + the set of all
nonnegative integers and N = Z + \ {O}. Thus, Rd is the d-dimensional
Euclidean space and Zd+ can be used as a multi-index set. Let (J be a
d-dimensional simplex with vertex set V = {VO, ... , vd }. Here, we assume that
Vi E Rd, i = 0, ..., d, are in the general position, namely, the vectors Vi - va,
i = 1, ... , d, are lineary independent. It is clear that, for any x E Rd, there
exists a unique ~ = (~o, ..., ~d) E Rd + I such that

d

X=L~iVi,
i~O

d

L ~i= 1.
;=0

The coefficient (d+ 1)-tuple ~ = (~O, ..., ~d) is called the barycentric coor
dinates of x with respect to the simplex a.
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Let a = (ao, ... , ad) E Zd/ 1 be a multi-index with

d

lal := I ai=n.
i~O

The Bernstein polynomial basis of degree n is given by

with

X E (J, lal =n,

and ~'" = ~'t) ~~t ••• ~~d. Clearly,

for x E (J, and L B""n(x)=1.
\",\=n

Associated with any IE C( (J), the nth Bernstein polynomial of I on (J is
defined by

Bn(f, x):= I I(x"" n) B"" n(X)'
\"'I=n

where

lal =n,

are called the nth B-net points of (J. Observe that there are (n; d ) nth B-net
points on (1. Let ei, i = 1, ..., d, denote the standard unit vectors in Rd. In
order to avoid an additional subscript or superscript, we will use eo, ..., ed

to denote the standard unit vectors in Rd + I.

Recently, Chang and Davis [2] proved that

nEN,

for any convex function Ion (J in the two-dimensional setting; Dahmen and
Micchelli [4] extended this result to any Rd. On the other hand, by the
convergence property of Bn(/, , ), it is easy to see that

nEN,

on (J if and only if I is an affine function on (J.
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In order to extend this study to piecewise polynomials, we consider
an mth simplicial subdivision 0"m of 0" (which will be defined precisely in
Section 2). Using a degree-raising formula, we have, for any IE C(O"),

on 0". Since

d 0:

X~.nm+ 1= L: -+'1 X~-ei,nm'
;~onm

the assumption of convexity of Ion each cell in (1 m yields

Hence, we have the following result which is an extension of the polyno
mial result of Dahmen and Micchelli in [4] as stated above to piecewise
polynomials.

THEOREM 1. IfI is convex on each cell in (1m' then

and n = 1, 2, ....

It is somewhat natural to believe that the inequality in Theorem 1 would
become an identity if and only ifI ES 1((J m), where Sk( (1m) denotes the space
of continuous piecewise polynomials with total degree at most k on (J m'

The objective of this paper is to prove that indeed this statement holds. For
the one-variable setting, this problem was already considered by Passow
(see [7]). Our paper is organized as follows. In Section 2, we introduce a
simplicial subdivision 0"m of the d-dimensional simplex (J and apply
the degree-raising formula of Bernstein polynomials to derive a relation
governing the coefficients for the identity Bnm(f, . ) = B nm + 1(f, . ). The main
results will be established in Section 3. We end this paper by proposing a
conjecture for spline functions with total degree k > 1.

2. PRELIMINARIES

We begin by recalling some notations and terminologies. Observe that
for d = 2, if the B-net points {x~, n} I~I ~ n on 0" are considered as the vertices

640/78/1,6



80 CHUI, HONG, AND WU

FIG. I. Triangulation 0"3 (d=2, n=3).

of the subtriangles, then they form an nth triangulation (J n of (J (see Fig. 1).
The elements of (J n have the same area and are actually similar to (J.

Clearly, there are n2 elements in (J no But for d ~ 3 the B-net points
{x,. n} 1'1 ~ n do not give a complete simplicial subdivision as it can be seen
in the following Figure 2, where d = 3 and n = 2. Nevertheless, according to
[4], there is still a canonical way for constructing simplicial subdivisions
of (J as follows, and this will allow us to apply an essential tool called
"degree-raising argument". Let fJjJ be the set of all permutations of
{1, 2, ..., d} and define (J" c Rd for n E fJjJ via

(J,,:= {xERd
: 1~X"(I)~ ~X"(d)~O}

= [0, e"( I), e"!l) + e,,(2), , en!l) + ... + e"ld)].

Clearly, the collection {(J ,,: n E f!lJ} forms a simplicial subdivision of
the unit cube, and in addition it is also shown in [3] that
.OT= {(In+a: rlEZd, nEY'} is a simplicial subdivision of Rd. Let lEf!/J
denote the identity, so that :Y"n = (3In) n (J, forms a simplicial subdivision
of (J, with vertices v = (vo, ..., vd ) E Rd and nV i are nonnegative integers with
1~ VI ~ ... ~ Vd' Thus, for any affine map A: (J, -+ (J and any n E N, the
collection (J A. n = A (:Y" n) forms an nth simplicial subdivision of (J. It is easy
to see that there are nd subsimplices in the nth subdivision (J A. n of (J. Let
(JA,n= {a-~ };d~I' We call the subsimplex a-~ a cell of (JA.no Since different
choises of A only result in a permutation of the coordinates in (J, we will

\ I...
•

FIG. 2. Incomplete triangulation of a tetrahedron.
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choose the same affine map A to form subdivisions of a in the following
discussion. For instance, we may restrict our consideration to the special
case A(O) = V

o and A(e l + ... + ek
) = v\ k = 1, 2, ... , d, for which we will

denote the nth subdivision of a by an' Here e i
, i= 1, ..., d, are the standard

unit vectors in Rd. For d = 2, it can be verified that (J A. n is independent of
A and agrees with the triangulation an described earlier.

The following result is a consequence of the degree-raising formula for
Bernstein polynomials. Since the proof is standard, we omit its proof and
only refer the readers to [4].

LEMMA 1. Let fE C(a) and n, mEN. Then

if and only if

( 1)

for alia = (:xo, ... , ad)E Zd/ 1 with lal = nm + 1.

Remarks. 1. Here, we point out that even thoughf(x",_ei.nm) may not
be defined for a i = 0 in (1), the corresponding coefficient a)(nm + 1) is zero
anyway. In this paper, we always assume that x'" _ ei. n makes sense; in other
words, in case rx i = 0, we automatically delete the corresponding B-net
point x",-e"n'

2. The restriction Bn(f, . ) = Bn+ 1(f, . ) shows that the function values
of f at the (n + 1)st layer of B-net points x"" n + 1 is a convex combination
of the values of f at some nth layer of B-net points, i.e.,

d a.
f(x""n+ 1)= i~O n ~ 1 f(x",_ e,.n)'

where rx = (ao, ..., ad) E Zd++ 1 with l:xl = n + 1, and

d a;
x ="--x ."'. n + I L.. + 1 ",.- e,. n

i=O n

3. MAIN RESULTS

(2)

(3)

For mE Z +' let llAam ) denote the space of piecewise polynomial func
tions on am with total degree at most k. Also, let Sk(am) = 7l: k(a m ) " C(a).
In this section, we derive a characterization off that satisfies

X E (J, n E N.
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For f E C( (J), we recall that

on (J if and only iffESt«(J). For m~2, this problem becomes much more
complicated. The following theorems, namely, Theorems 2-4, may be
considered to be generalizations of the results of [7] to the d-dimensional
setting. Let a(xx--eo.n, ...,xx-ed.n) be the subsimplex with vertices
Xx _ eo. n' ... , Xx _ ed. n' Our first result in this direction is the following.

THEOREM 2. Let fES1(a m ) and nEN. Then the total degree of the
Bernstein polynomial Bmn + l(f,·) is at most mn. In particular,

n= 1, 2, .... (4 )

Proof By Lemma 1, we have

Bnm + I(f, .) - Bnm(f, .)

[

d rJ.. ]L: f(x x. nm + t )- L -tlf(Xx-ei.nm) B x. nm + I(·)·
Ixl ~nm+ I j~O nm

We note that, for any B-net point xx. nm + I' there are cells

U(Xa-eo,nm' .. " xo: ..-cd,nm)

(5)

in a nm with the vertex set {xx _ e,. 11m: i = 0, 1, ..., d} and a-:, in am such that

Xa • nm+ 1 E a(xo: - eo. nm' ... , X:x - ed, '1m),

o-(X:x_ eo. nm' ... , Xa; - ed. nm) C a~ ,

and for all n E N,

Ak
X:x _ C/. nm E (J m , i= 0,1, ..., d. (6 )

By (3), we note that the barycentric coordinates of Xx. 11m + I with respect to
the simplex a( X x _ eo. nm' ... , Xx _ ed. nm) is given by

BecausefES[(am ), it is an affine polynomial on any cell of the mth simpli
cial subdivision of a. The linearity of f on a:' shows that

Hence, by applying (5), the conclusion follows. I
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Next we consider a partial converse of Theorem 2 in the case m > 1. The
full converse of Theorem 2 is still open even in the one-dimensional setting.
We say that a function f is axially convex if it is convex in any direction
parallel to the edges of the simplex (J (see [5] and the references therein),
i.e.,

holds for every t E [0, 1] and any Xl, x 2 such that Xl - x 2 = O(v i
- vi), for

some 0 ~ i <j ~ d and some () E R. The same argument in the proof of
Theorem 1 also gives

XE(J, nEN,

whenever f is axially convex on each cell in (Jm'

We are now in a position to prove the following.

THEOREM 3. Let f E C( (J) be axially convex in each cell in (Jm' If

nEN,

then fE Sd(Jm)'

Proof By the hypothesis and applying Lemma 1, we have

d rJ.
tL -+1 f(xo-et.nm)-f(xo,mn+')=O,

t~Omn

for any n E Nand rJ. E Z:+ I with 1rJ.1 = mn + 1. On the other hand, by (3),
we have

d rJ.
t

xo,mn+l = L -+1 x,,-et,nm'
t~Omn

This shows that the point (xo,mn+l,f(xo,mn+d), which is on the surface
y = f( x), also lies on the graph of the affine function

d

L(x) = L ~tf(x,,_ et,nm),
t~O

with xE(J(x"-eo,mn,,,,,x,,-ed,mn) and (~O'''''~d) the barycentric coor
dinates of x with respect to the cell (J( Xo _ eo. nm' ... , Xo _ ed. nm), n = 1, 2, ....
The axial convexity and continuity of f guarantee that f is an affine poly
nomial on each cell in (J m' so that f E S, (Jm)' I

It is clear that convexity is a stronger condition than axial convexity. For
example, the function f( x, y) = - xy is axially convex but not convex on
(J = {(x, y): x +y ~ 1, x, y ~ O}. Hence, the following conclusion holds.
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COROLLARY 1. Let fE C(O") such that the restriction off on each cell in
0" m is either convex or concave, and

XEO", nEN.

Then fE St(O"m).

Let D( 0"m) denote the set of net points (or vertices) of the m th sub
division 0"m of 0". We also have the following.

THEOREM 4. Let O"q be a simplicial subdivision of the simplex 0", D(O"q)
the set of net points of O"q, mEN, andfE Sl(O"q) such that

XEO", nEN.

Then D(O"q)cD(O"m)'

Proof Suppose that 0"* is an arbitrary cell in O"m and there exists some
x* E D(O"q) n Int(O"*). In addition, suppose that there are two d-dimensional
subsimplices O"~ and O"~ in O"q that have a common vertex x* and a common
(d - 1)-dimensional simplex, and that the planar surfaces defined by the
restrictions of f E S I (0"q) on 0"~ and O"~ have different normal vectors. Then
we can find a neighborhood N(x*) of x* such that N(x*) c Int(O"*) and an
open set 0 c N(x*) n (O"~ u O"~ ) such that 0 n O"~ # 0, i = 1, 2. Obviously,
f is convex (or concave) in 0 since it is piecewise linear; and so, for
sufficiently large n, there exists a (d + 1)-dimensional array

for some points /3 E Z"/ 1 with 1/31 = nm + 1, and only some of the points in
Ko, say xp_ eo. nm' ..., Xp _ eJ. nm lie in 0 n O"~, and the others are in 0 n O"~.

Let us introduce an affine function

"g(x)= 1:: ~rf(xfJ-e/.nm)'
t~O

where

"x= 1:: ~txfJ-e/,nm'
t=o

"L ~t = 1.
t=O

Since f is convex (or concave) on 0 and the planar surfaces defined by the
restrictions of f on 0 n 0"~ and 0 n O"~ have different normal vectors, we
have, for any XEO"(Xp_eo,nm, ..., xp-ed,nm),

f(x) <g(x) (or f( x) > g(x».
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Therefore, without loss of generality, we may assume that f is convex. By
(3) and (6), we have

On the other hand, by the assumption

and Lemma 1, we obtain

This contradiction shows that

x* ¢ Int(O"*).

Furthermore, since the Bernstein polynomial on the boundary 00" could be
obtained by restricting Bn(f,') to 00", Lemma 1 still holds even if we
restrict ourselves to the boundary of 0". So, applying the same argument to
00", we may conclude that x* is not in the relative interior of 00"*. By
repeating this procedure on the lower dimensional boundaries, we have
x* E D( 0"m)' This completes the proof of Theorem 4. I

It is natural to ask the possibility of extending our results to Sk( 0"m),
k> 1. In this regard, we believe that Theorem 3 holds mainly because of
the affine polynomial reproduction property of the Bernstein operator
BAf, .). Let us consider certain linear combinations of Bernstein polyno
mials introduced first by Butzer [1] in the univariate case and by Wu [8]
in the multidimensional setting, for reproducing polynomials p E 1tk' More
precisely, let L~O) = Bn , and define L~k) recursively by

k= 1, 2, ....

Then

Vp E 1tk + I'

(see [6,8]). An extension to SAO"m) can be formulated as follows.

Conjecture. Let (J m be the m th simplicial subdivision of 0", mEN, and
k be any positive integer. Then
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if and only if

CHUI, HONG, AND WU

nEN,

where Ll is the difference operator defined by
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